سوال های کامپیوتری
۹۱-۱ مهره ی سیاه در یک جدول ۱۰*۱۰ قرار دارد
در هر مرحله ۱ مهره ی سیاه را بر میداریم و در یک خانهِ خالى مهره ی سفید می گذاریم
این کار را تا زمانى انجام مى دهیم که ۹۱ مهره ی سفید داشته باشیم
ثابت کنید لحظه ای وجود دارد که در ۲ خانهِ مجاور مهره ی سیاه و سفید قرار بگیرد. (85/3/12)
۲ -یک پسر بچه n بار سوار یک چرخ و فلک با n صندلى میشود بعد از هر مرحله
او چرخ و فلک را در جهتِ عقربه هاى ساعت کمتر از یک دور کامل می چرخاند و روى یک صندلىِ دیگر می نشیند
تعداد صندلی هایی که در هر بار میگذرد را طول چرخش می نامیم !!
براى چه nهایى او میتوانند سواره هر nصندلى شود به شرطى که طول همه ى n-۱ چرخش متفاوت باشد(85/3/12)
۳ - رامتین و آرمین می خواهند ۲۵ سکه به ارزشِ ۱ تا ۲۵ را بین خود تقسیم
کنند در هر حرکت یکى از آنها سکه را انتخاب میکند و دیگرى تصمیم میگیرد که
این سکه به چه کسى تعلق بگیرد
در ابتدا رامتین سکه را انتخاب می کند و در هر مرحله کسى سکه را انتخاب می کند که در آن لحظه پول بیشترى داشته باشد !!
اگر پولشان برابر باشد کسى که مرحله ى قبل سکه را انتخاب کرده این مرحله هم او انتخاب میکند
در پایان کسى که پول بیشترى داشته باشد برنده است !!
چه کسى استراتژی برد دارد ؟(85/12/10)
۴ - مجموع تعداد مثلث هاى G و مکمل G را بر حسب m ( تعداد یال ها) و n (تعداد راس ها) و دنباله درجات بیابید. (85/12/17)
۵ -تعداد دور های جهت دار به طول ۳ را در یک تورنمنت بر حسب n(تعداد راس ها) و دنباله درجات ورودى پیدا کنید.
تورنمنت گراف کاملى است که یال هاى آن را جهت دار کرده ایم
(85/12/17)
۶ - صندلى هاى یک سینما به صورت یک مستطیل m*n چیده شده است
m*n بلیط فروخته شده است ولى اشتباهاً براى بعضى صندلى ها بیش از یک بلیط فروخته شده است
مسئول سالن افراد را طورى روى صندلی ها نشانده است که هر کس در سطر یا ستون درستى نشسته است
ثابت کنید میتوان افراد را طورى نشاند که هر کس یا در سطر خود باشد یا در ستون خود و حداقل یک نفر سر جاى خود نشسته باشد!!
مسئول سینما در بدترین حالت حداکثر چند نفر را میتوانند سر جاى خود بیاورد!!!(85/12/25)
این گلچینى از سوال هایى بود که من تو ماه اسفند سالى که مرحله ۲ داشتم حل کردم !
سؤالات ۱،۲،۳،۵ و ۶ رو خودم حل کردم
و ۴ را با راهنمایی
- ۸۸/۰۱/۱۸